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Background

Confidentiality Issue

• Notable blockchains like Hyperledger 
Fabric process and store data in 
plaintext, exposing sensitive data to 
anyone with access to the blockchain.

• Sensitive data of safety-critical 
applications such as finance and 
healthcare should be accessible to the 
data owners only.

A Promising Appraoch

• We can address the confidentiality 
issue with Homomorphic Encryption 
(HE) and Non-Interactive Zero-
Knowledge Proofs (NIZKPs).

• HE enables arithmetic computation to 
be performed directly on ciphertexts.

• NIZKPs enables proving a statement 
without revealing any information 
beyond the validity of the statement 
itself. 



Related Work and Their Deficiencies

Low Performance

• The utilization of HE and NIZKPs incurs intensive 
computational costs to blockchains.

• For example, ZeeStar [1], a notable confidentiality-
preserving blockchain,  exhibits a long commit 
latency of tens of seconds.

No Support for 
General Smart Contracts

• Most prior work relies on partially homomorphic 
encryption (PHE) that supports either addition or 
multiplication on ciphertexts.

General-Purpose Blockchain
• ZeeStar
• Arbitrum
• Ekiden
• Hawk

Specific-Purpose Blockchain

• Zcash
• Monero
• FabZK
• Zether
• RFPB

Related Work

Deficiencies



Can we achieve both high performance and general smart contract support for 
confidentiality-preserving blockchains?

Insights

• FHE supports both addition and 
multiplication on ciphertexts, making 
FHE ideal for supporting general smart 
contracts.

We can efficiently integrate fully homomorphic encryption (FHE) and blockchains 
by introducing GPU acceleration for transaction execution and FHE computation.

FHE GPU acceleration
• Blockchain transactions that invoke the same 

smart contract are highly parallelizable.
• GPU offers superior parallel processing 

capabilities.

Our Question

Our First Insight



Insights 

When given identical inputs, different blockchain nodes perform FHE arithemtic calculation and 
generate inconsistent ciphertexts for the same plaintext result. This is because FHE schemes 
intentionally introduce random noise to prevent attackers from extracting information from ciphertexts.

The Ciphertext Inconsistency Problem

We can integrate lightweight NIZKPs with the trusted execution mechanism of the 
execute-order-validate blockchain workflow.

• This mechanism first executes a transaction on 
multiple nodes and checks iff a majority of 
nodes produce consistent results.

Trusted Execution Mechanism Lightweight NIZKPs
• NIZKPs decrypt all ciphertexts and check the 

consistency of quorom plaintexts.
• No costly FHE arithmetic calculation is involved 

inside NIZKPs.

Our Second Insight



Contributions

System Overview

1. We propose a GPU-accelerated transaction execution workflow that integrates GPU-accelerated FHE
into blockchain and ensures execution correctness through lightweight NIZKPs.

2. We implement a a high-performance confidentiality-preserving blockchain prototype system named 
GAFE that incorporates the aforementioned workflow.

3. We conduct end-to-end evaluations on GAFE to demonstrate its effectiveness and high performance.



System Model
• Clients

• Encrypt transaction input data;
• Submit the encrypted 

transactions for execution;
• Prove the execution correctness;

• Executors
• Execute encrypted transactions 

with GPU acceleration;
• Validate transaction results;
• Maintain the latest local copy of 

blockchain and state database;
• Orderers

• Run a BFT protocol to determine 
the order of transactions within 
each block;



Client Key Distribution

Before each client is ready to join the GAFE blockchain network, the client must run 
the key generation algorithm associated with the FHE scheme to generate a unique 
public-private key set for conducting FHE operations.

1. Firstly, the client generates a secret key sk for ciphertext 
decryption.

2. Secondly, the client derives a public key pk for plaintext 
encryption and a public key ek for on-ciphertext arithmetic 
computation from sk.

3. Additionally, the client derives a unique fixed-length string id
based on sk to serve as the client’s unique identifier

sk

pk ek id



Workflow Overview

Phase 1: Construction.
Clients encrypt transaction data, generate 
precondition NIZKPs, and submit the transaction.

Phase 2: Execution.
Executors independently execute transactions 
and accelerate execution with GPU. 
Clients generate NIZKPs to prove the execution 
correctness.

Phase 3: Ordering.
Orderers run a BFT to determine the order of 
transactions within each block, and disseminate 
the generated block to all executors for validation.

Phase 4: Validation.
Executors sequentially validate each transaction 
within the block in the determined order and 
commit valid transactions.



Workflow Phase 1: Construction

Phase 1.1: Encrypting transaction data.
Clients encrypt transaction input data using the 
encryption keys.

Phase 1.3: Submitting transactions.
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Phase 1.2: Proving preconditions.
πbal≥val

cs Executors



Workflow Phase 2: Execution

Phase 2.1: Verifying preconditions.

Phase 2.3: Returning transaction results.

πbal≥val
tru

e

false
Valid?

Terminate execution.

Add transactions to the 
buffer for waiting parallel 
execution on GPU.

Phase 2.2: Executing transactions with GPU-
accelerated FHE.
When a timeout occurs or the number of buffered 
transactions reaches a specific threshold, the executor 
performs the following three steps:
1. Moves all buffered transactions from main memory 

to GPU memory;
2. Launches the corresponding GPU kernels of FHE 

computation.
3. Copies back the resulting ciphertexs back to main 

memory.



Workflow Phase 2: Execution

Phase 2.4: Proving execution correctness.
• The clients of the transaction generate NIZKPs to 

prove the consistency of the majority of the results.
• Take the example of digital payment, the sender cs

generates an NIZKP πs that takes cs’s decryption key 
as private input, decrypts cs’s updated balance 
ciphertexts from all the results, and checks the 
consistency of the resulting plaintexts. 

• The receiver cr follows a similar procedure and 
generates an NIZKP πr using cr’s decryption key to 
ensure the consistency of cr’s updated balance.

cs cr
πs πr



Workflow Phase 3 and 4: Ordering and Validation

Phase 3: Ordering.
1. After NIZKPs generation, the client sends the 

transaction to orderers for ordering.
2. Orderers run a BFT consensus protocol (e.g., PBFT) to 

collectively determine the transaction order within 
each block.

3. Once a consensus is reached among all orderers, they 
proceed to generate the block and disseminate the 
block to all executors for validation

cs

Phase 4: Validation.
The executor sequentially validates all transactions and only commit 
transactions that satisfy two conditions:
1. First, the transaction must not have any write conflict with 

previously committed transactions within the same block. 
2. Second, the transaction must be associated with valid correctness 

NIZKPs (e.g., {πs, πr}), which serve as proofs of the transaction’s 
execution correctness.

Once the executor has validated all transactions, the executor 
permanently appends the block to the local copy of the blockchain.

tx
tru
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Aborted.

Committed to the 
state database.



Implementation and Evaluation Metrics

• We built a prototype system of Gafe based on 
Hyperledger Fabric v2.5 and simulated the business logic 
of digital payment. 

• We implemented the CKKS scheme for GAFE based on 
the state-of-the-art studies on GPU-accelerated FHE. 

• GAFE adopted the gnark [4] library’s implementation for 
the Groth16 NIZKP system and employed our Golang 
implementation of the PBFT consensus protocol.

• We also developed a baseline system called GAFE (w/o. 
GPU) that follows a similar transaction execution 
workflow as GAFE, except that the baseline does not 
buffer transactions for concurrent execution and 
performs all FHE computations exclusively on the CPU.

Implementation Evaluation Metrics

We evaluated the following metrics:
1. Effective throughput, which indicates the average 

number of transactions per second (TPS) committed to 
the blockchain;

2. Commit latency, which measures the time duration 
from transaction construction to commitment;

3. The cumulative distribution function (CDF) of commit 
latency for all committed transactions and the latency 
of each phase in the transaction execution workflow.



End-To-End Evaluations

• We evaluated the end-to-end performance of GAFE and GAFE (w/o. GPU).
• For each evaluation, we created three executors, four orderers, and one 

thousand clients. 
• We constructed and submitted 100,000 digital payment transactions. 
• To prevent transaction aborts caused by write conflicts, we explicitly ensured 

that no two transactions in the same block shared identical clients.
• We ran the evaluation ten times and reported the average values of the 

metrics

Evaluation Methodology

End-To-End Performance
GAFE exhibited exceptional end-to-end performance:
• A high throughput of 258 TPS (3.1× increase compared to GAFE (w/o. GPU))
• A low average latency of 1.61 seconds (37% reduction compared to GAFE 

(w/o. GPU));
• A shorter 99% tail latency of 2.09 seconds (43% reduction compared to 

GAFE (w/o. GPU));



End-To-End Evaluations

Performance Analysis
GAFE’s high performance is attributed to the concurrent FHE 
computations on GPU.
• Gafe achieved notably lower latency in the execution

phase. 
• The reduced latency is enabled by GPUs’ optimized parallel 

processing capability, facilitating concurrent execution of a 
significant portion of arithmetic computations in typical 
FHE schemes. 

• As a result, Gafe avoids performing FHE computation on 
the CPU, which has significantly fewer cores and is less 
efficient in executing a large number of compute-intensive
computations in parallel. Latency of each phase.



Conclusion

• GAFE protects data confidentiality by encrypting transaction data using FHE, 
ensures execution correctness by generating lightweight NIZKPs, and achieves 
high performance by leveraging GPUs to execute transactions concurrently.

• GAFE supports general-purpose smart contracts through the employment of 
FHE.

• Our evaluations demonstrated the superior performance of GAFE compared to 
the baseline, with a significant 3.1× increase in effective throughput (258 TPS) and 
a notable 37% decrease in commit latency (1.61 seconds).

GAFE, a confidentiality-preserving blockchain that achieves high 
performance via the novel GPU-accelerated transaction execution 
workflow.
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