
Rongxin Guan, Tianxiang Shen, Sen Wang, Gong Zhang, Heming Cui, Ji Qi*

High-Performance Confidentiality-Preserving Blockchain
via GPU-Accelerated Fully Homomorphic Encryption

The University of Hong KongHuawei Technologies
Institute of Software,

Chinese Academy of Sciences

Background

Confidentiality Issue

• Notable blockchains like Hyperledger
Fabric process and store data in
plaintext, exposing sensitive data to
anyone with access to the blockchain.

• Sensitive data of safety-critical
applications such as finance and
healthcare should be accessible to the
data owners only.

A Promising Appraoch

• We can address the confidentiality
issue with Homomorphic Encryption
(HE) and Non-Interactive Zero-
Knowledge Proofs (NIZKPs).

• HE enables arithmetic computation to
be performed directly on ciphertexts.

• NIZKPs enables proving a statement
without revealing any information
beyond the validity of the statement
itself.

Related Work and Their Deficiencies

Low Performance

• The utilization of HE and NIZKPs incurs intensive
computational costs to blockchains.

• For example, ZeeStar [1], a notable confidentiality-
preserving blockchain, exhibits a long commit
latency of tens of seconds.

No Support for
General Smart Contracts

• Most prior work relies on partially homomorphic
encryption (PHE) that supports either addition or
multiplication on ciphertexts.

General-Purpose Blockchain
• ZeeStar
• Arbitrum
• Ekiden
• Hawk

Specific-Purpose Blockchain

• Zcash
• Monero
• FabZK
• Zether
• RFPB

Related Work

Deficiencies

Can we achieve both high performance and general smart contract support for
confidentiality-preserving blockchains?

Insights

• FHE supports both addition and
multiplication on ciphertexts, making
FHE ideal for supporting general smart
contracts.

We can efficiently integrate fully homomorphic encryption (FHE) and blockchains
by introducing GPU acceleration for transaction execution and FHE computation.

FHE GPU acceleration
• Blockchain transactions that invoke the same

smart contract are highly parallelizable.
• GPU offers superior parallel processing

capabilities.

Our Question

Our First Insight

Insights

When given identical inputs, different blockchain nodes perform FHE arithemtic calculation and
generate inconsistent ciphertexts for the same plaintext result. This is because FHE schemes
intentionally introduce random noise to prevent attackers from extracting information from ciphertexts.

The Ciphertext Inconsistency Problem

We can integrate lightweight NIZKPs with the trusted execution mechanism of the
execute-order-validate blockchain workflow.

• This mechanism first executes a transaction on
multiple nodes and checks iff a majority of
nodes produce consistent results.

Trusted Execution Mechanism Lightweight NIZKPs
• NIZKPs decrypt all ciphertexts and check the

consistency of quorom plaintexts.
• No costly FHE arithmetic calculation is involved

inside NIZKPs.

Our Second Insight

Contributions

System Overview

1. We propose a GPU-accelerated transaction execution workflow that integrates GPU-accelerated FHE
into blockchain and ensures execution correctness through lightweight NIZKPs.

2. We implement a a high-performance confidentiality-preserving blockchain prototype system named
GAFE that incorporates the aforementioned workflow.

3. We conduct end-to-end evaluations on GAFE to demonstrate its effectiveness and high performance.

System Model
• Clients

• Encrypt transaction input data;
• Submit the encrypted

transactions for execution;
• Prove the execution correctness;

• Executors
• Execute encrypted transactions

with GPU acceleration;
• Validate transaction results;
• Maintain the latest local copy of

blockchain and state database;
• Orderers

• Run a BFT protocol to determine
the order of transactions within
each block;

Client Key Distribution

Before each client is ready to join the GAFE blockchain network, the client must run
the key generation algorithm associated with the FHE scheme to generate a unique
public-private key set for conducting FHE operations.

1. Firstly, the client generates a secret key sk for ciphertext
decryption.

2. Secondly, the client derives a public key pk for plaintext
encryption and a public key ek for on-ciphertext arithmetic
computation from sk.

3. Additionally, the client derives a unique fixed-length string id
based on sk to serve as the client’s unique identifier

sk

pk ek id

Workflow Overview

Phase 1: Construction.
Clients encrypt transaction data, generate
precondition NIZKPs, and submit the transaction.

Phase 2: Execution.
Executors independently execute transactions
and accelerate execution with GPU.
Clients generate NIZKPs to prove the execution
correctness.

Phase 3: Ordering.
Orderers run a BFT to determine the order of
transactions within each block, and disseminate
the generated block to all executors for validation.

Phase 4: Validation.
Executors sequentially validate each transaction
within the block in the determined order and
commit valid transactions.

Workflow Phase 1: Construction

Phase 1.1: Encrypting transaction data.
Clients encrypt transaction input data using the
encryption keys.

Phase 1.3: Submitting transactions.

cs cr
val

cs’s ek
val

cr’s ek

vals
valr

Phase 1.2: Proving preconditions.
πbal≥val

cs Executors

Workflow Phase 2: Execution

Phase 2.1: Verifying preconditions.

Phase 2.3: Returning transaction results.

πbal≥val
tru

e

false
Valid?

Terminate execution.

Add transactions to the
buffer for waiting parallel
execution on GPU.

Phase 2.2: Executing transactions with GPU-
accelerated FHE.
When a timeout occurs or the number of buffered
transactions reaches a specific threshold, the executor
performs the following three steps:
1. Moves all buffered transactions from main memory

to GPU memory;
2. Launches the corresponding GPU kernels of FHE

computation.
3. Copies back the resulting ciphertexs back to main

memory.

Workflow Phase 2: Execution

Phase 2.4: Proving execution correctness.
• The clients of the transaction generate NIZKPs to

prove the consistency of the majority of the results.
• Take the example of digital payment, the sender cs

generates an NIZKP πs that takes cs’s decryption key
as private input, decrypts cs’s updated balance
ciphertexts from all the results, and checks the
consistency of the resulting plaintexts.

• The receiver cr follows a similar procedure and
generates an NIZKP πr using cr’s decryption key to
ensure the consistency of cr’s updated balance.

cs cr
πs πr

Workflow Phase 3 and 4: Ordering and Validation

Phase 3: Ordering.
1. After NIZKPs generation, the client sends the

transaction to orderers for ordering.
2. Orderers run a BFT consensus protocol (e.g., PBFT) to

collectively determine the transaction order within
each block.

3. Once a consensus is reached among all orderers, they
proceed to generate the block and disseminate the
block to all executors for validation

cs

Phase 4: Validation.
The executor sequentially validates all transactions and only commit
transactions that satisfy two conditions:
1. First, the transaction must not have any write conflict with

previously committed transactions within the same block.
2. Second, the transaction must be associated with valid correctness

NIZKPs (e.g., {πs, πr}), which serve as proofs of the transaction’s
execution correctness.

Once the executor has validated all transactions, the executor
permanently appends the block to the local copy of the blockchain.

tx
tru

e

false
Valid?

Aborted.

Committed to the
state database.

Implementation and Evaluation Metrics

• We built a prototype system of Gafe based on
Hyperledger Fabric v2.5 and simulated the business logic
of digital payment.

• We implemented the CKKS scheme for GAFE based on
the state-of-the-art studies on GPU-accelerated FHE.

• GAFE adopted the gnark [4] library’s implementation for
the Groth16 NIZKP system and employed our Golang
implementation of the PBFT consensus protocol.

• We also developed a baseline system called GAFE (w/o.
GPU) that follows a similar transaction execution
workflow as GAFE, except that the baseline does not
buffer transactions for concurrent execution and
performs all FHE computations exclusively on the CPU.

Implementation Evaluation Metrics

We evaluated the following metrics:
1. Effective throughput, which indicates the average

number of transactions per second (TPS) committed to
the blockchain;

2. Commit latency, which measures the time duration
from transaction construction to commitment;

3. The cumulative distribution function (CDF) of commit
latency for all committed transactions and the latency
of each phase in the transaction execution workflow.

End-To-End Evaluations

• We evaluated the end-to-end performance of GAFE and GAFE (w/o. GPU).
• For each evaluation, we created three executors, four orderers, and one

thousand clients.
• We constructed and submitted 100,000 digital payment transactions.
• To prevent transaction aborts caused by write conflicts, we explicitly ensured

that no two transactions in the same block shared identical clients.
• We ran the evaluation ten times and reported the average values of the

metrics

Evaluation Methodology

End-To-End Performance
GAFE exhibited exceptional end-to-end performance:
• A high throughput of 258 TPS (3.1× increase compared to GAFE (w/o. GPU))
• A low average latency of 1.61 seconds (37% reduction compared to GAFE

(w/o. GPU));
• A shorter 99% tail latency of 2.09 seconds (43% reduction compared to

GAFE (w/o. GPU));

End-To-End Evaluations

Performance Analysis
GAFE’s high performance is attributed to the concurrent FHE
computations on GPU.
• Gafe achieved notably lower latency in the execution

phase.
• The reduced latency is enabled by GPUs’ optimized parallel

processing capability, facilitating concurrent execution of a
significant portion of arithmetic computations in typical
FHE schemes.

• As a result, Gafe avoids performing FHE computation on
the CPU, which has significantly fewer cores and is less
efficient in executing a large number of compute-intensive
computations in parallel. Latency of each phase.

Conclusion

• GAFE protects data confidentiality by encrypting transaction data using FHE,
ensures execution correctness by generating lightweight NIZKPs, and achieves
high performance by leveraging GPUs to execute transactions concurrently.

• GAFE supports general-purpose smart contracts through the employment of
FHE.

• Our evaluations demonstrated the superior performance of GAFE compared to
the baseline, with a significant 3.1× increase in effective throughput (258 TPS) and
a notable 37% decrease in commit latency (1.61 seconds).

GAFE, a confidentiality-preserving blockchain that achieves high
performance via the novel GPU-accelerated transaction execution
workflow.

Speaker: Rongxin Guan

Thanks for listening
and questions are welcome!

