

A Blockchain-based Approach for Model Card Accountability and Regulatory Compliance

International Workshop on Blockchain for Information Systems (BC4IS24) and Blockchain for Trusted Data Sharing (B4TDS)

(Co-located with the 36th International Conference on Advanced Information Systems Engineering (CAiSE) 2024)

Ankur Lohachab, Visara Urovi IDS, DACS, Maastricht University 03 June 2024

Outline

- ☐ Introduction
 - Context
 - Model Cards
 - Problematics
- Our Contribution
 - Proposed Approach
 - Roles and Interactions
 - Model Card Lifecycle
- ☐ Key Takeaways
 - Transparency
 - Traceability
 - Accountability
- ☐ Conclusion and Perspectives

Introduction (1/7)

Context

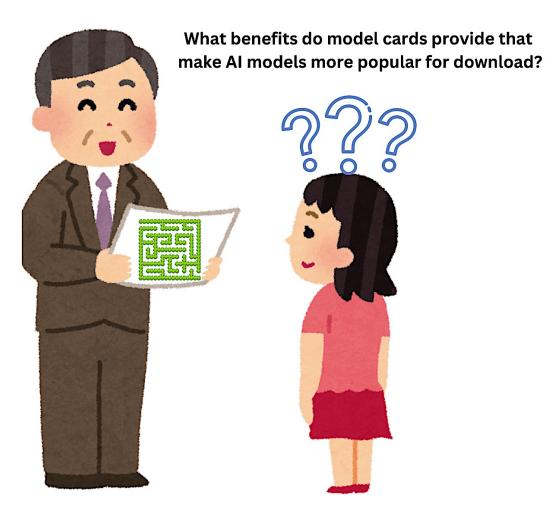


Figure 1: 42.8% of repositories have model cards, yet they account for 90.5% of total downloads (Data Source: Liang et al. 2)

Introduction (2/7)

Context

REALM - GA n. 101095435

Introduction (3/7)

Context

Figure 2: Model Card provides information at a glance, explaining your device

Introduction (4/7)

Motivating Scenario

1. Clinical Transparency

Provides detailed information on how AI models make decisions. helping clinicians understand and trust the AI's recommendations.

2. Patient Safety

☐ Documents potential risks and failure modes of AI models. ensuring safe implementation in patient care.

3. Regulatory Compliance

☐ Helps meet healthcare regulatory standards by providing comprehensive documentation of model development, validation, and deployment processes.

4. Bias Identification

☐ Highlights any biases in the training data or model behavior, promoting fair and equitable treatment across diverse patient populations.

5. Performance Metrics

 Clearly outlines the performance metrics of AI models, including accuracy, sensitivity, and specificity, tailored to specific healthcare applications.

How Can Model Cards for Al Models in Healthcare Provide Benefits and What Are Their Key Applications?

AI Model Card for Healthcare

Model Overview

- Description of the AI model
- Intended use cases
- Healthcare applications

- **Data Sources** Information about datasets used
- Patient demographics
- Data collection methods
- Preprocessing steps

Performance Metrics

- Precision
- Recall
- F1 Score - ROC-AUC
- Relevance to healthcare outcomes

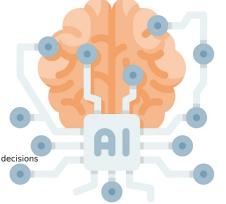
Bias and Fairness

- Mitigation strategies
- Impact on different patient groups

Safety and Risk Mitigation

- Failure modes
- Safety measures

Regulatory Compliance


- Standards adhered to

Explainability and Interpretability

- Communication to clinicians and patients

Deployment and Monitoring

- Deployment process - Real-time monitoring
- Updating mechanisms
- Figure 3: A Snippet of Al Model Card Template for Healthcare

Introduction (5/7)

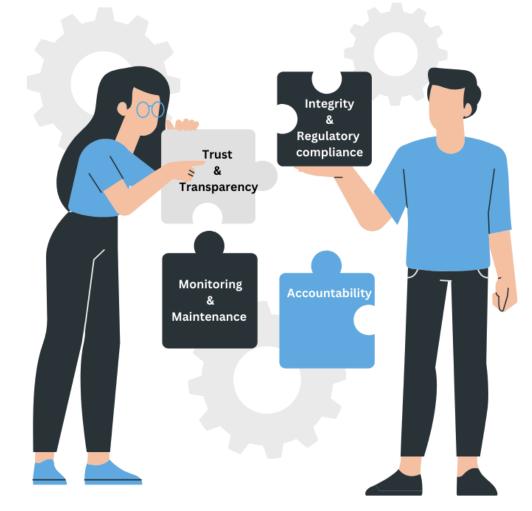
Model Cards

Table 1: Simplified Comparison of a Few Methods to Create Model Cards

Method	Standardization	Customization	Integration	Ethical Considerations
Model Card Toolkit (MCT) ³	Provides a consistent template that includes sections for model details, performance, fairness, and limitations. Utilizes Jinja templates for customization and is integrated with TFX.	Moderate customization; allows adding extra sections but within a predefined structure. Supports JSON Schema for custom sections.	Seamless integration with TensorFlow Extended (TFX) and other ML frameworks. Exports model cards in various formats such as HTML, PDF, and Markdown.	High; includes specific sections for ethical considerations and bias analysis. Facilitates fairness evaluation with quantitative metrics and visualizations.
Hugging Face Model Cards ⁴	High; provides a standard template widely recognized in the community. Structured format includes sections for intended uses, limitations, biases, and evaluation metrics.	Moderate; allows for some customization within the template. Supports additional fields and markdown for detailed descriptions and explanations.	High; tightly integrated with the Hugging Face model repository. Models and their cards are colocated, making it easy to find documentation alongside models.	High; encourages documentation of ethical considerations and fairness analysis. Provides tools for bias detection and mitigation. Model cards can include detailed ethical analyses and usage recommendations.

Introduction (6/7)

Problematics



1. Trust & Transparency

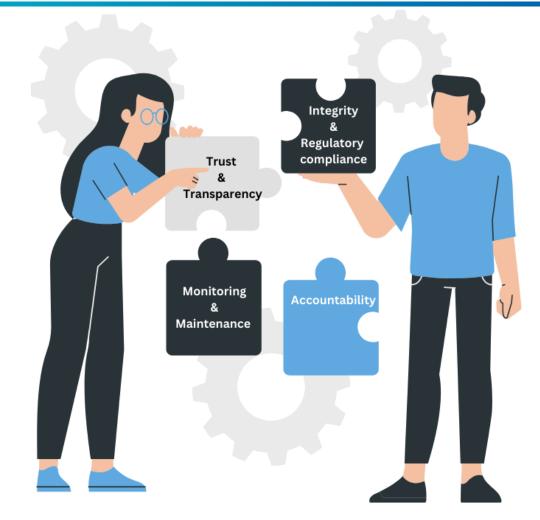
☐ Inaccessible or Non-Traceable Logs: Logs that detail the model's process are not traceable or not accessible.

2. Integrity & Regulatory compliance

- ☐ Claims are not verifiable: For instance, the claimed accuracy of a diagnostic model might not be reproducible in external studies.
- A data provider shares a model card for a specific purpose, but it is repurposed for another use, potentially violating **GDPR** rules and patient consent.

Introduction (7/7)

Problematics



3. Monitoring & Maintenance

- ☐ *Metrics are not secure:* Performance metrics could be manipulated or not robustly validated.
- An outdated model continues to be used without re-evaluation, potentially leading to incorrect diagnoses due to new medical knowledge not being incorporated.

4. Accountability

☐ Unclear responsibility: It is not clear who is responsible; e.g., in the event of a misdiagnosis, it remains ambiguous whether the model developers, the data providers, or another party should be held accountable.

Our Contribution (1/5)

Proposed Approach

- ☐ Smart Wallet Contract (Managed Smart Wallet EIP 4337):
 - Deployment of Adapted Managed Factory Contract
 - Entity Registration and Role Management

Key Benefits

- Enhanced User Autonomy and Security: Features like transaction batching and sponsored transactions improve user experience in managing model cards.
- Seamless Authentication and Upgradeability: Provides a straightforward login, leading to secure user authentication and wallet upgradeability via smart contracts.

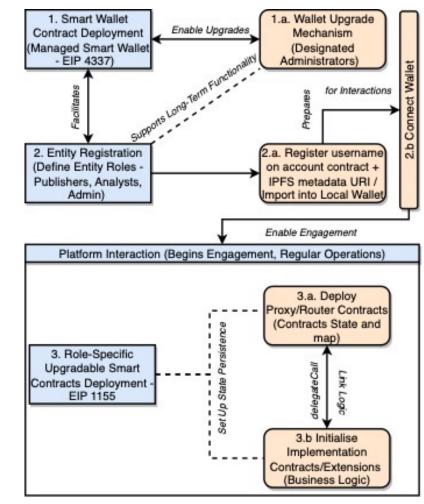


Figure 4: An Overview of the Proposed Approach (m-LUCE)

Our Contribution (2/5)

Proposed Approach

- □ Role-Specific Upgradable Smart ContractsDeployment EIP 1155
 - Incorporates ERC-4907 extensions to set specific access durations for model cards, with automatic access revocation.

Key Benefits

- Multi-Functionality with EIP 1155: Supports issuing and distributing model cards to multiple analysts simultaneously, leveraging batch minting capabilities.
- Upgradeability Through Proxy/Router Contracts: To support system's flexibility via upgradeable contract structures.

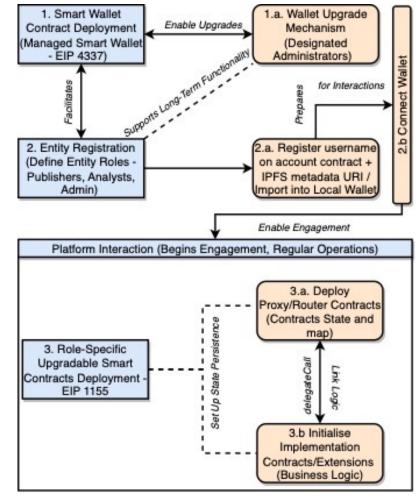


Figure 4 (Cont..): An Overview of the Proposed Approach (m-LUCE)

Our Contribution (3/5)

Roles and Interactions

1. Submit Claim

■ Network Participant (NP), acting as the Provider (a kind of an Al Developer), submits a claim to the m-LUCE.

Process Claim

□ The NP, serving as the Evaluator (a kind of a certification authority), processes the claim, including submitting the claim for evaluation, requesting revisions, processing revisions, validating, and potentially rejecting the claim, all within the m-LUCE framework.

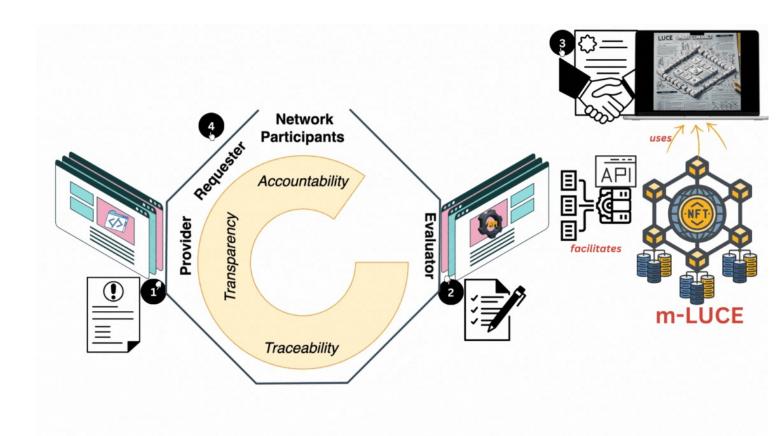


Figure 5: Big Picture of Network Participant's Journey in m-LUCE

Our Contribution (4/5)

Roles and Interactions

3. Publish Claim

□ Once validated, the **NP** (**Evaluator**) may publish the claim.

4. Access Claim

□ An **NP** (**Requester**) searches for claims of interest. Access to these claims is contingent on permissions defined by m-LUCE's smart contract. Based on these permissions, access will either be granted or denied.

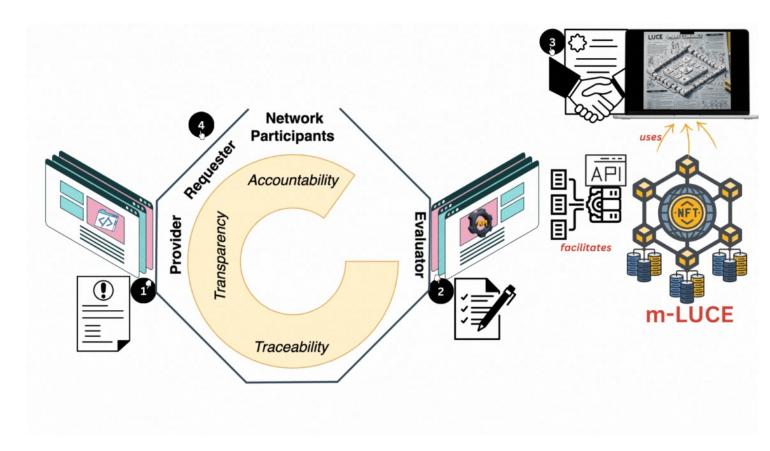
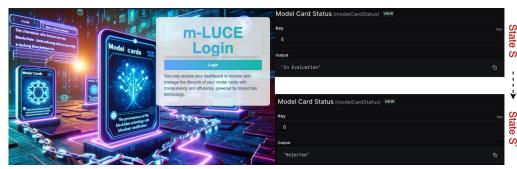


Figure 5 (Cont..): Big Picture of Network Participant's Journey in m-LUCE


Our Contribution (5/5)

Model Card Lifecycle

/get_models/; /stats/

☐ Evaluator & Requester

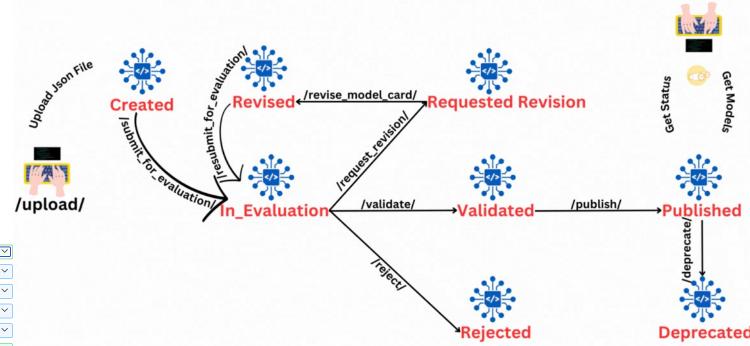


Figure 6: Illustrating Possible States and Transitions of Model Cards

\supseteq Some of the Key Takeaways (1/3)

Transparency

- ☐ How can logging every transaction and contract interaction in real-time enhance the transparency, and integrity, of the model card's lifecycle?
- Public Accessibility of Data (e.g., Smart Contracts and Transactions)
 - Contract address: 0x50e8bB3e23603b165e5102bD647D7c6592cAD163
 - Full transaction history and details (e.g., Txn hash, Date time, From, To
- **Enhanced Trust**
 - Creator Information: 0x3cac9dd536810260ab5f0678e257a18a54074a66
 - Outcome: Stakeholders can verify the authenticity and origin of the Model Card, Start date knowing exactly who created it
- **Pseudonymity**
 - Maintaining Privacy with Transparency
 - Outcome: Instead of using personal information like usernames (e.g., Ankur), blockchain uses public addresses to maintain user privacy, striking a balance between transparency and privacy, which fosters trust and security

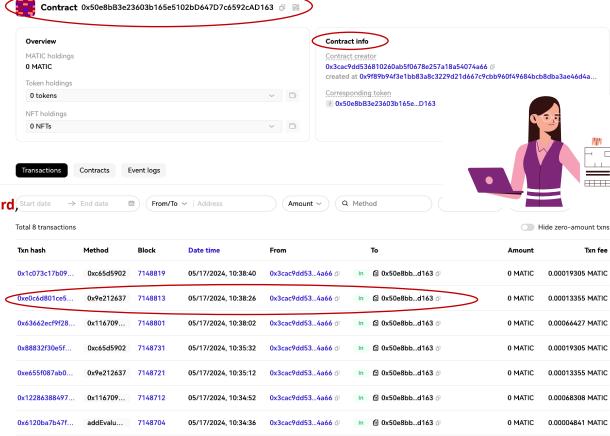


Figure 7: A Snippet of a Transaction History

\supseteq Some of the Key Takeaways (2/3)

Traceability

- ☐ How does tracking every step in the lifecycle of a Model Card, from creation to interaction, ensure a comprehensive record of all activities?
- **Initiate a Transaction Lookup**
 - Transaction hash: 0x1c073c17b09ca7e46530d24c44f7a70b545d3c6ab820b81b38ec0a1532dbda13
 - Outcome: Uniquely identifies the transaction, allowing anyone to trace and verify all details, including the involved addresses and method called in the lifecycle of a Model Card
- **Review Event Logs** (e.g., What occurred during the transaction)
 - Methods were called on the contract and the data associated with these calls
 - Method Calling (0xc65d5902) -- e.g., transfer(address to, uint256 value)
 - Event Log:
 - o topic 0: Event signature (e.g., Transfer(address indexed from, address indexed to, uint256 value))
 - o topic 1: First indexed parameter (e.g., sender address)
 - o topic 2: Second indexed parameter (e.g., receiver address)
- Trace the Participants, Verify and Cross-reference
 - The addresses involved (From and To) are clearly recorded, making it possible to trace that address 0x3cac9dd536810260ab5f0678e257a18a54074a66 initiated the interaction with the contract at 0x50e8bB3e23603b165e5102bD647D7c6592cAD163.
 - Outcome: By cross-referencing multiple transactions and event logs involving these addresses, you can build a comprehensive picture of activities and interactions related to model cards.

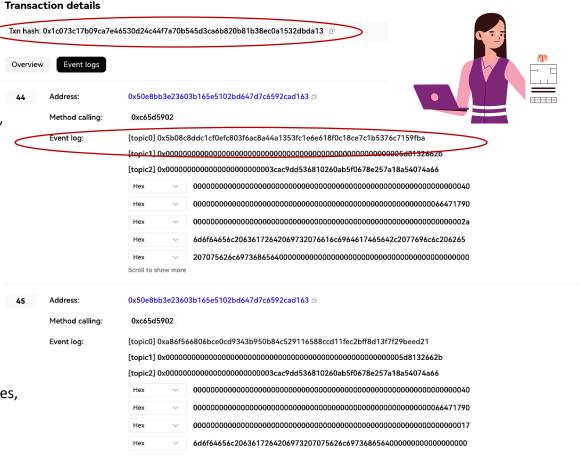
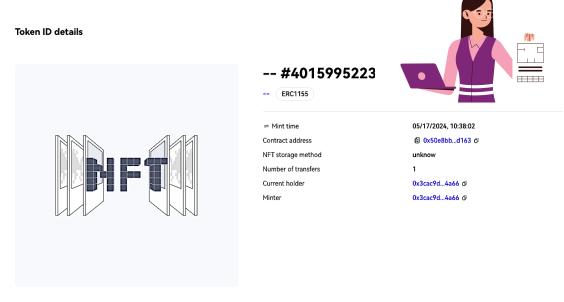


Figure 8: A Snippet of Transaction Event Logs



2 Some of the Key Takeaways (3/3)

Accountability

- How does ensuring accountability for all participants throughout the lifecycle of a model card enhance the integrity and security of the entire process?
- Ownership Tracking (e.g., current holder of the token)
 - Token ID Details: e.g., #401599522347
 - Outcome: Uniquely identifies the transaction, allowing anyone to trace and verify all details, including the involved addresses and method called in the lifecycle of a Model Card
- **Immutable Logs of Action**
 - Once the model card is minted and any transactions are recorded, these records are permanently recorded, making them impossible to alter or delete.
 - Outcome: Ensures that the historical data of the Model Card is protected from tampering, thereby enhancing accountability and trust

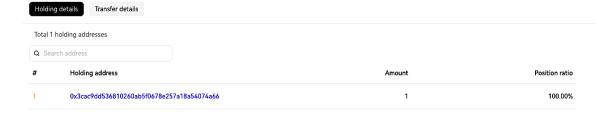
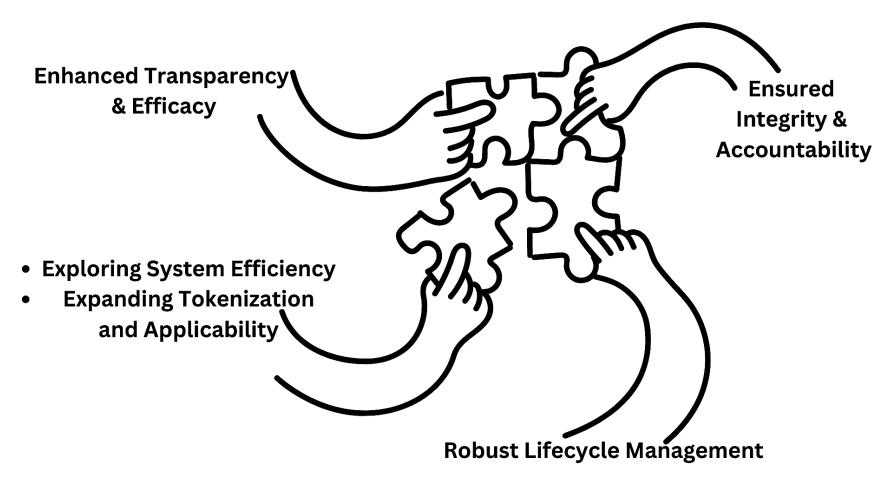



Figure 9: A Snippet of a Created Model Card as an NFT using ERC-1155

Conclusion and Perspectives

References

- 1. Perrault, R., & Clark, J. (2024). Artificial Intelligence Index Report 2024. Retrieved from https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI 2024 Al-Index-Report.pdf
- 2. Liang, Weixin, Nazneen Rajani, Xinyu Yang, Ezinwanne Ozoani, Eric Wu, Yiqun Chen, Daniel Scott Smith, and James Zou. "What's documented in AI? Systematic Analysis of 32K AI Model Cards." arXiv preprint arXiv:2402.05160 (2024).
- 3. Google. About Model Cards. Retrieved from https://modelcards.withgoogle.com/about
- 4. Hugging Face. Model Cards. Retrieved from https://huggingface.co/docs/hub/en/model-cards
- 5. European Parliament. (2024). Artificial Intelligence Act. Retrieved from https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138 EN.pdf

Thank you for your attention!

Ankur Lohachab (Postdoctoral Researcher)

ankur.lohachab@maastrichtuniversity.nl; ankurlohachab@gmail.com

Institute of Data Science, Department of Advanced Computing Sciences, Maastricht University, Maastricht, Netherlands

